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Abstract

The respective roles of local and nonlocal interactions in the thermodynamic cooperativity of proteins are investigated using continuum

(off-lattice) native-centric Gō-like models with a coarse-grained Ca chain representation. We study a series of models in which the (local)

bond- and torsion-angle terms have different strengths relative to the (nonlocal) pairwise contact energy terms. Conformational distributions

in these models are sampled by Langevin dynamics. Thermodynamic cooperativity is characterized by the experimental criteria requiring the

van’t Hoff to calorimetric enthalpy ratio DHvH=DHcal < 1 (the calorimetric criterion), as well as a two-state-like variation of the average

radius of gyration upon denaturation. We find that both local and nonlocal interactions are critical for thermodynamic cooperativity. Chain

models with either much weakened local conformational propensities or much weakened favorable nonlocal interactions are significantly

less cooperative than chain models with both strong local propensities and strong favorable nonlocal interactions. These findings are

compared with results from a recently proposed lattice model with a local–nonlocal coupling mechanism; their relationship with

experimental measurements of protein cooperativity and chain compactness is discussed.

q 2003 Published by Elsevier Ltd.
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1. Introduction

How a globular protein can fold reliably into a particular

three dimensional conformation in vitro, without the

participation of molecular chaperones, is a central puzzle

in biophysics. If we wish not only to predict the folded state

of a protein, but also to understand the folding phenomenon

in terms of physical processes, we need to use physics-based

methods: we run computer simulations of self-contained

polymer models [1] that attempt to mimic the behavior of

real protein molecules. A complete quantum mechanical

simulation, which would include the solvent molecules in

addition to all the atoms in the protein molecule, is not yet

possible. But in attempting to design simplified models, we

face the problem of how to simplify: which characteristics

are essential and which can be neglected? What effective

energy functions does this imply for the simplified system?

Part of this general question is addressed in this article.

Folding experiments on small globular proteins have long

shown evidence of thermodynamic and kinetic cooperativ-

ity [2,3], which indicates a phenomenon similar to a first

order phase transition between native and denatured states.

As our group has argued recently [4–8], this observation

can be exploited to constrain the set of possible simplified

models and interaction schemes: for a particular simplified

model to be a quantitatively accurate representation of

protein thermodynamics and kinetics, it is essential that,

when appropriately applied to a small globular protein, it

can produce the experimentally observed generic coopera-

tive behavior.

Such constraints turn out to be rather stringent. It is

nontrivial to construct model interaction schemes that can

produce proteinlike cooperativities [4–8]. A case in point is

a class of common Gō-like [9] models [8,10]. Their

potential functions are native-centric, in that they are

explicitly biased to favor a given native structure. Gō-like
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modeling of proteins has provided important physical

insights [10–13]. These include an increasing number of

elegant elucidations of functional protein dynamics under

native conditions [14–18]. As for global folding and

unfolding of proteins (in contrast to their near-native

dynamics), a detailed discussion of the merits and

limitations of Gō-like approaches can be found in Ref.

[8]. Notably, common Gō-like models do not appear

capable of producing simple two-state folding/unfolding

kinetics. Instead, their chevron plots exhibit severe roll-

overs, which are typical of the class of folding kinetics that

is customarily referred to as non-two-state [8,19]. None-

theless, common three-dimensional Gō-like protein models

seem sufficient to produce apparent two-state thermodyn-

amic behavior [5,8], although their two-dimensional

counterparts fail to do so [4].

In the present investigation, we limit our scope to

thermodynamic cooperativity. Specifically, we aim to

explore how protein thermodynamic two-state-like behavior

is affected by the relative strengths of local interactions

(between residues close together along the chain sequence)

and nonlocal interactions (between residues far apart along

the chain sequence). The respective roles of local and

nonlocal interactions are an issue of long standing interest in

the study of protein energetics [20–25], and the effect of

analogous interactions on the phase diagram of lattice

polymers has also been investigated [26–29]. Here the issue

is addressed by varying the potential function in a series of

coarse-grained Gō-like models, which represent the protein

as a string of Ca positions in continuum space and which are

simulated using Langevin dynamics. In view of the

limitations of common Gō models [8], the present study

should be viewed as a first step in tackling the issue of local

vs. nonlocal interactions in cooperative continuum protein

models. To assess the robustness of our conclusions, results

from the continuum Langevin models are also compared

with results from lattice model simulations.

We begin in Section 2 by providing details of the models.

An outline of the thermodynamics involved in interpreting

the simulations is given in Section 3. Our findings are

presented in Section 4, and we conclude in Section 5 with a

discussion of the implications of our results.

2. Models and simulation details

2.1. Continuum models

For the present continuum Gō-like models we use a

representation, introduced by Clementi et al. [10], of the 64-

residue truncated form of chymotrypsin inhibitor 2 (CI2).

The native contact set corresponds to NCS2 in Ref. [8].

We use an energy function that is similar to one used

previously [8,10,30]. The potential energy function V ; from

which the conformational force is derived, is given by

V ¼ Vstretching þ Vbending þ Vtorsion þ Vnative þ Vnonnative ð1Þ

where

Vstretching ¼
XN21

i¼1

klðl
i 2 li0Þ

2 ð2Þ

contains a summation over the virtual bonds between pairs

of residues,

Vbending ¼
XN22

i¼1

1uðu
i 2 ui

0Þ
2 ð3Þ

involves a summation over the virtual bond angles between

triplets of residues, and

Vtorsion ¼
XN23

i¼1

{1ð1Þf ½1 2 cosðfi 2 fi
0Þ�

þ1
ð3Þ
f ½1 2 cos3ðfi 2 fi

0Þ�}

ð4Þ

represents the virtual torsional potential between quad-

ruplets of residues. The latter contains a term with a single

minimum as well as the traditional three-minimum term

[31]. [We note that there is an apparent typographical error

in the corresponding Vtorsion in Ref. [10], which effectively

lists these terms as 1 þ cosðfi 2 fi
0Þ and 1 þ cos3ðfi 2

fi
0Þ: But such terms would fold the chain into the mirror

image of the PDB structure]. Vstretching; Vbending and Vtorsion

together account for the local interactions (between residues

that are separated by no more than three places along the

chain), which include local conformational propensities for

the native structure. The local interactions are expressed in

this way because it biases the local geometry of the chain.

The fourth term,

Vnative ¼
X

li2jl$4

1native 5
r

ij
0

rij

 !12

26
r

ij
0

rij

 !10" #
ð5Þ

sums over the pairwise interactions between residues that

are regarded as being in contact in the native structure; this

accounts for the nonlocal interactions (between residues that

are separated by four or more places along the chain).

Finally,

Vnonnative ¼
X

li2jl$q

1
rrep

rij

� �12

ð6Þ

contains repulsive pairwise interactions between other pairs

of residues, in order to ensure the self-avoidance of the

chain.

The chain contains N residues. li is the length of virtual

bond i; ui is a bond angle, fi is a dihedral angle and rij is the

distance between two residues i and j: The corresponding

values in the native structure are li
0; u

i
0; f

i
0 and r

ij
0 : The range

rrep of the repulsive potential between pairs of residues that

are not bonded and do not interact via a native contact
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interaction is set to 4 Å. Length is expressed in units of Å,

and energy in units of 1; the energy parameter of the

nonnative repulsive interaction, so that 1 itself is unity. kl;

1u; 1
ð1Þ
f ; 1

ð3Þ
f and 1native are also parameters of the potential

energy function. kl is fixed at 1001= �A; but the other

parameters can be varied; 1u ¼ 201ð1Þf and 1
ð3Þ
f ¼ 0:51ð1Þf

are defined in terms of 1ð1Þf ; which can be varied to test the

effect of changing the strength of the local interactions, while

1native can also be varied (see below) in order to test the effect of

changing the strength of the nonlocal interactions. The energy

of the system is thus controlled by three parameters 1; 1native

and 1
ð1Þ
f : All interaction parameters are taken to be

temperature independent in the present study.

Apart from the variable parameters, this energy function

differs from the similar function used in Refs. [8,10,30] in

two further important ways, as follows. (1) For rij=r
ij
0 ,ffiffiffiffi

5=6
p

; we set 1native ¼ 1; while for rij=r
ij
0 $

ffiffiffiffi
5=6

p
; we set

1native ¼ 1a: Then we can vary the native interaction

parameter 1a; in order to test the effect of changing the

strength of the nonbonded attractive interactions between

residues, while the short-range repulsive part of Vnative

maintains the self-avoidance of the chain. (2) The value q;

which is the smallest number of places along the chain by

which two residues can be separated if they are to interact by

Vnonnative; can be set either to q ¼ 4 (in order to eliminate

any double counting of local interactions, in situations

where 1
ð1Þ
f is not being varied) or to q ¼ 2 (in order to allow

1
ð1Þ
f to decrease without compromising the self-avoidance of

the chain).

The equation of motion of each residue is

m
›viðtÞ

›t
¼ Fi

confðtÞ2 mgviðtÞ þ hiðtÞ ð7Þ

where m is the mass of a residue (set to unity), g is the

coefficient of friction, t is time, and viðtÞ; Fi
confðtÞ and hiðtÞ

represent each of the three components of the velocity,

conformational force and random force, respectively [32].

The random force is given by

hiðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mgkBT

dt

r
ji ð8Þ

where kBT is the Boltzmann constant multiplied by the

absolute temperature, dt is the integration time step and ji is

a random variable taken from a Gaussian distribution with

zero mean and unit variance. The most appropriate time

scale can be estimated [32] by t ¼
ffiffiffiffiffiffiffiffiffiffi
m0a2

0=10

q
; where m0; a0

and 10 are the mass, length and energy scales, respectively.

We set m0 ¼ m ¼ 1; 10 ¼ 1 ¼ 1 and a0 ¼ 4 �A (the latter is

approximately the length of a virtual bond between two

residues and is also the range rrep of the repulsive

interaction), and so t ¼ 4: We define the integration time

step dt ¼ 0:005t and the coefficient of friction g ¼ 0:05t21

in terms of this time scale. The velocity–verlet algorithm

[8,32,33] is used to integrate the equations of motion.

2.2. Lattice models

The lattice models considered here are 27mers with a

maximally compact native (ground-state) conformation.

Details of the models have been described elsewhere

[34,35]. We compare three native-centric interaction

scenarios which have varying degrees, and different

mechanisms, of thermodynamic cooperativity. As an

example of a particular native conformation to which

these three scenarios can be applied, we choose the one in

Ref. [35] with relative contact order 0.410. In scenario (i),

which corresponds to the common Gō model, the native

contact interactions are pairwise additive. In scenario (ii),

we add an extra favorable energy Egs for the native structure

as a whole (as defined by Eq. (5) in Ref. [34]). Scenario (iii)

introduces, in place of the extra favorable energy, a coupling

between the strength of the contact interaction and the local

geometry: two residues which are in contact in the native

state will interact strongly only when the local geometries of

the protein chain around the residues are the same as those

in the native state, as described in Ref. [35]. We characterize

this mechanism as local–nonlocal coupling or ‘a coopera-

tive interplay between favorable nonlocal interactions and

local conformational preferences’ [35]. In this scenario, the

strength of the native contact interaction is reduced by an

attenuation factor a when the local geometry is nonnative.

The common (uncoupled) Gō model is equivalent to a ¼ 1

(no attenuation), while a ¼ 0 implies complete coupling;

a ¼ 0 is used here. Under scenarios (i) and (iii), the native

state has an energy of 228 units, while the extra favorable

native energy in scenario (ii) changes the energy of the

native state to 242 units. Standard Monte Carlo methods

are used for conformational sampling [34,35]. The per-

mitted chain moves are end flips, corner flips, crankshafts

and rigid rotations. Each attempted move is counted as one

simulation time step, irrespective of whether the move is

accepted by the Metropolis criterion.

3. Thermodynamics

All simulations are performed at constant temperature,

with no explicit consideration of pressure. This is because

the focus of the present study is protein behavior under

atmospheric pressure, and the contribution of a PV term to

protein energetics is small under these conditions [4].

Therefore, for our present purposes, we can consider the

Helmholtz and Gibbs free energies to be equivalent.

3.1. Calculation of the heat capacity

The specific heat capacity CV ðTÞ of the model protein is

given by the standard relation

CV ðTÞ ¼
1

kBT2
½kE2ðTÞl2 kEðTÞl2� ð9Þ
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where kXðTÞl denotes the Boltzmann average of quantity X

at temperature T ; and the total energy E is the sum V þ EK

of potential and kinetic energies. We compute the averages

by standard histogram sampling techniques [8,10].

In lattice studies, the kinetic energy EK is not treated.

Therefore, E in Eq. (9) has traditionally been taken, in

protein modeling, to be the potential energy term V : This

procedure has often been extended to continuum model

studies, in Ref. [8] for example, although EK is accessible

and well-defined in off-lattice models. However, kE2l2
kEl2 – kV2l2 kVl2 in general. The two quantities would be

equal if EK were a constant, but that would be unphysical. In

this study, we have calculated CV ðTÞ using Eq. (9) both with

E ¼ V þ EK and with the substitution E ! V : The results

are not identical: an example is given in Fig. 1.

Fig. 1 shows that the difference between heat capacity

values obtained using the two methods is small around the

transition midpoint Tm: This is because any energy added to

the system during the unfolding transition contributes

mostly to the potential rather than to the kinetic energy.

The difference is less negligible for the ‘shoulders’ on either

side of the heat capacity peak. At very low temperatures,

including the kinetic energy contribution can lead to a

smaller heat capacity, because the molecule at this

temperature is in a relatively fixed state: nearly all of the

kinetic energy is accounted for by the oscillation of pairs of

residues about the minima of their mutual (bonded or

nonbonded) interaction energies. The potential energy and

the kinetic energy associated with these oscillations both

fluctuate, but their sum fluctuates much less, and so the

fluctuations in total energy are smaller than the fluctuations

in potential energy, with the result that the calculated heat

capacity is smaller when EK is taken into account. Overall,

Fig. 1 indicates that while the difference between the heat

capacities calculated using the two different methods is not

negligible, it is not drastic. Probably this is because EK;

while not invariant, fluctuates much less than V : For this

reason, we do not expect conclusions drawn from previous

calculations of heat capacities [8], which used V ; to be

changed greatly by calculations using E: Nonetheless, we do

expect a proper account of the kinetic contributions to

protein heat capacities to be important in addressing the

contribution of bond vector motions to the heat capacity

[36].

Since the PV term is neglected in the present formu-

lation, CV ðTÞ is effectively equal to CPðTÞ; which is

generally measured by calorimetry (and which can be

expressed in a form similar to Eq. (9), but with the enthalpy

H taking the place of the energy E [4,5]). Therefore, we may

refer to the quantity computed using Eq. (9) simply as heat

capacity. All subsequent heat capacity curves shown in this

article for the continuum models are obtained using the total

energy E ¼ V þ EK:

3.2. The free energy

The Helmholtz free energy of the model system is

FðTÞ ¼ 2kBT ln ZðTÞ; where ZðTÞ is the partition function

at temperature T : It follows that, in the vicinity of the

simulation temperature Tsim; the Helmholtz free energy of

the model system at temperature T ; relative to its value at

the simulation temperature, may be approximated using the

formula:

DFðTÞ

kBT
¼

FðTÞ

kBT
2

FðTsimÞ

kBTsim

¼ 2ln
X

i

pðEi; TsimÞexp Ei

1

kBTsim

2
1

kBT

� �� �( ) ð10Þ

where the sum is performed over sets of microstates in

different energy ranges Ei: pðEi; TsimÞ is the probability

density at the simulation temperature, and is estimated

directly from the Langevin dynamics simulations.

The inset of Fig. 1 provides an example of DFðTÞ;

showing that the gradient of the free energy with respect to

T changes rather abruptly around the transition temperature

Tm (vertical dotted lines). The transition temperature Tm

corresponds to the temperature at the peak of the heat

capacity curve, which was denoted by Tmax in Ref. [5].

Apparently, below Tm; the system spends most time in states

in the vicinity of the bottom of the native basin, and so the

changes in F with respect to temperature are dominated by

the behavior of these states. However, as the temperature

increases past Tm; the system, and therefore the rate of

change of FðTÞ; starts to be dominated by states near the

bottom of the denatured basin. As a result, the gradient of

FðTÞ changes rather suddenly at Tm: While the FðTÞ

Fig. 1. Heat capacity as a function of temperature, for one particular set of

interaction parameters. Solid curve: heat capacity calculated using the total

energy; dashed curve: heat capacity calculated using only the potential

energy. Parameters are 1
ð1Þ
f ¼ 1:00; 1a ¼ 1:00; q ¼ 4; simulation tempera-

ture Tsim ¼ 1:02: Inset: free energy as a function of temperature, for the

same model, showing a sharp change in gradient around Tm: The vertical

dotted lines in the figure and the inset mark the transition midpoint

temperature Tm:
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gradient could never be discontinuous because the model

system is finite, the kink at Tm does indicate that the

transition is two-state-like, and therefore that it is similar to

a first order phase transition.

3.3. Thermodynamic cooperativity

The presence of a peak in the heat capacity at a transition

temperature Tm; as in Fig. 1, indicates that the folding/

unfolding transition possesses a degree of thermodynamic

cooperativity. As our group has argued, the degree of

thermodynamic cooperativity in protein models can be

quantified by the ratio k2 ¼ DHvH=DHcal of the van’t Hoff

enthalpy DHvH to the calorimetric enthalpy DHcal of the

transition. This ratio is closely related to that determined

experimentally by differential scanning calorimetry [37]. In

model studies, the calorimetric enthalpy DHcal may be

determined from an integral of the heat capacity across the

transition region,

DHcal ¼
ð

dTCPðTÞ ð11Þ

while the van’t Hoff enthalpy is equal to twice the standard

deviation of the enthalpy distribution at the transition

midpoint,

DHvH ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2

mCmax
P

q
ð12Þ

where Cmax
P is the peak value of the heat capacity. We have

followed standard usage in this section by expressing k2 in

terms of H and CP: However, as mentioned in the previous

section, simulations produce values for E and CV ; which for

the present application are essentially equivalent to H and

CP:

As has been pointed out [5], comparison of simulation

heat capacity scans to experiment is often complicated by

the fact that the heat capacity tails which we observe in

simulations would, if they occurred in a real system, be

swamped by the solvent contribution and ignored by the

common procedure of using empirical baseline subtraction

to calculate DHvH=DHcal: In other words, tail contributions

that arise from conformational transitions may be masked

by solvent contributions in real data analysis [5,7]. There-

fore, for completeness, we also perform empirical baseline

subtractions on our simulated heat capacity scans, produ-

cing a revised ratio k
ðsÞ
2 (defined in Ref. [5]) to facilitate

comparison with experiment.

3.4. Radius of gyration

The radius of gyration Rg of a particular conformation of

the protein is an indicator of its compactness. It is defined by

R2
g ¼

1

N

XN
i¼1

lri 2 krll2 ð13Þ

where N is the number of residues, ri is the position of the

ith residue, and krl is the average position (centroid) of the

given conformation. The Boltzmann average kRgl ¼
� ffiffiffiffi

R2
g

q �
over a given conformational ensemble is obtained by

standard histogram techniques. Two-state-like behavior

requires a steplike sigmoidal change in kRgl upon denatura-

tion at Tm; with little postdenaturational expansion of the

chain [5].

4. Results and discussion

To study the effect of local vs. nonlocal interactions, we

first vary the strength 1
ð1Þ
f of the local interactions while

keeping the strength of the nonlocal interactions fixed in the

continuum CI2 construct (Figs. 2 and 3). The heat capacity

scans, for four scenarios (four models) with different values

for 1ð1Þf ; are shown in Fig. 2. They all exhibit a fairly sharp

peak except for the model with 1
ð1Þ
f ¼ 0:25: The heat

capacity peak signifies substantial heat absorption within a

narrow temperature range at the folding/unfolding tran-

sition. The absorbed energy propels the chain from its

low-energy folded conformations (native ensemble) to its

high-energy unfolded conformations (denatured ensemble).

However, the mere existence of a relatively sharp peak in

the heat capacity function does not necessarily mean that

the transition is as cooperative as those observed in

small single-domain proteins. Coil–globule transitions in

Fig. 2. Heat capacity as a function of temperature, for varying local

interaction energy 1
ð1Þ
f : Other parameters 1a ¼ 1:00 and q ¼ 2 are fixed.

(From left to right) dotted curve: 1
ð1Þ
f ¼ 0:25; Tm ¼ 0:74; short dashed

curve: 1ð1Þf ¼ 0:50; Tm ¼ 0:84; long dashed curve: 1ð1Þf ¼ 0:75; Tm ¼ 0:94;

solid curve: 1ð1Þf ¼ 1:00; Tm ¼ 1:03: These scans are obtained by histogram

techniques from simulations performed at Tsim ¼ 0:73; 0.84, 0.94, and 1.03,

respectively. The DHvH=DHcal cooperativity coefficients k2 without base-

line subtractions are 0.33, 0.43, 0.44, and 0.44, respectively. Modified

cooperativity coefficients kðsÞ2 after subtraction of the baselines (indicated

by thin lines in the figure) for 1ð1Þf ¼ 0:50; 0.75, and 1.00 are 0.97, 0.98, and

0.99, respectively. No value for kðsÞ2 was calculated for 1ð1Þf ¼ 0:25 because

the shape of its heat capacity curve does not suggest any clear choice of

baselines that are intuitively more reasonable than others. The inset shows

k2 (diamonds) and k
ðsÞ
2 (circles) as functions of 1ð1Þf :
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homopolymers are not two-state-like, but their calorimetric

heat capacity scans can have very sharp peaks [38]. A more

quantitative measure of thermodynamic cooperativity is the

traditional calorimetric two-state criterion (see above),

which has emerged recently as a powerful modeling tool

[4–8,39–42]. Ratios of van’t Hoff to calorimetric enthalpy

were calculated for the four models as described above; the

ranges of the temperature integrations used in the determi-

nation of DHcal [Eq. (11)] were taken to be equal to the

ranges shown in Fig. 2.

The inset of Fig. 2 shows that the DHvH=DHcal ratio

(diamonds) of these models is only weakly dependent on

1
ð1Þ
f over an extended range of 1ð1Þf values, but that the ratio is

significantly smaller when the local interactions are

substantially weaker, at 1
ð1Þ
f ¼ 0:25; than the nonlocal

interactions. As discussed above, quantitative comparisons

between simulated and experimental DHvH=DHcal values

require the introduction of model calorimetric baselines [5]

similar to those employed in the interpretation of exper-

imental data. Traditionally, experimental baselines are

designed to remove solvation contributions (temperature-

dependent effective interactions), in order to extract the heat

capacity effects associated with the folding/unfolding

transition itself [37]. The present models do not contain

temperature-dependent interactions. Therefore, the heat

capacity contributions eliminated by the model calorimetric

baselines in Fig. 2 can only originate from vibrational

motions and conformational transitions. Increasingly, it is

being recognized [5,36,43] that similar heat capacity

contributions from bond vector motions and more collective

conformational transitions might also be ‘hidden’ below

traditional baselines constructed for analyzing experimental

calorimetric data, although the magnitude of such contri-

butions needs to be elucidated. The three models in Fig. 2

that are relatively more cooperative (with higher k2 values)

all have modified DHvH=DHcal values (kðsÞ2 ; circles in the

inset), after empirical baseline subtractions, that are very

close to unity. (We note that the recent determination of

DHvH=DHcal values in an all-atom Gō model [42] involved

baseline subtractions as well: cf. Fig. 8 of Ref. [42].)

However, a protein chain model’s ability to attain a near-

unity DHvH=DHcal ratio after baseline subtractions does not

by itself imply that its thermodynamic behavior is similar to

that of real, small single-domain proteins [5,6]. This is

because the heat capacity contributions discarded by certain

baselines can actually be symptoms of significant deviations

from two-state-like behavior. It has been recognized [5]

that, to clarify this situation, we can use the behavior of the

average radius of gyration kRgl of a protein chain model as

an additional evaluation criterion for the model’s thermo-

dynamic cooperativity. Small angle X-ray scattering

(SAXS) experiments have demonstrated that the average

radius of gyration kRgl of several small single-domain

proteins behaves in an apparently two-state manner

[44–46], showing very little postdenaturational ðT . TmÞ

expansion of the chain outside the transition regime that

corresponds to the region of the heat capacity peak. We

require chain models of small single-domain proteins to

exhibit similar behavior [5]. Now, to further assess the four

models in Fig. 2 with different local interaction strengths,

we calculate their average radii of gyration as a function of

temperature (Fig. 3). To ensure adequate sampling, kRgl for

each model is obtained from three different simulation

temperatures; the results are thus displayed as three

discontinuous curves. Despite some minor discrepancies

(owing to sampling uncertainties) between parts of the kRgl
function deduced from different simulation temperatures for

the 1ð1Þf ¼ 0:25 case, the general trend in Fig. 3 is very clear.

Models with weaker local interactions are less cooperative

in that their kRgl curves show more postdenaturational

increase than do those of models having stronger local

interactions. For instance, the kRgl of the 1
ð1Þ
f ¼ 0:25 model

increases by <3.0 Å between T < 0:82 (the end of the

transition region) and T < 1:11: In contrast, a similar

temperature increase for the 1
ð1Þ
f ¼ 1:00 model from T <

1:11 (the end of the transition region) to T < 1:40 leads to

an increase of only <1.6 Å in kRgl: These observations

indicate that two-state-like thermodynamic cooperativity

cannot be achieved if the local conformational propensities

of a protein are much weaker than the favorable nonlocal

interactions. This confirms a similar conclusion which was

derived recently from a more limited study of a ‘contact

dominant model’ [8].

We next extend our analysis by applying the same

computational procedure to varying the strength 1a of the

favorable nonlocal interactions while keeping the strength

of the local interactions fixed. Consistent with the seminal

Fig. 3. Average radius of gyration as a function of temperature, for varying

local interaction energy 1
ð1Þ
f ; other parameters 1a ¼ 1:00 and q ¼ 2 are

fixed, as in Fig. 2. The correspondence between line styles and 1
ð1Þ
f values is

identical to that in Fig. 2. For each value of 1
ð1Þ
f ; simulations were

performed at three different values of Tsim to ensure adequate sampling

across the entire temperature range shown. (From left to right) for 1ð1Þf ¼

0:25 (dotted curves), Tsim ¼ 0:73; 0.93, 1.13; for 1ð1Þf ¼ 0:50 (short dashed

curves), Tsim ¼ 0:84; 1.04, 1.24; for 1
ð1Þ
f ¼ 0:75 (long dashed curves),

Tsim ¼ 0:94; 1.14, 1.34; and for 1
ð1Þ
f ¼ 1:00 (solid curves), Tsim ¼ 1:03;

1.23, and 1.43.
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study of Gō and Taketomi [20], Figs. 4 and 5 show that

variations in nonlocal 1a have a more prominent effect on

thermodynamic cooperativity than variations in local 1ð1Þf :

While the peak heat capacity values for the three models in

Fig. 2 with 1
ð1Þ
f $ 0:5 are similar, the peak heat capacity

values for the three models in Fig. 4 with 1a $ 0:5 show a

significant monotonic increase with 1a: In addition, for the

1a ¼ 0:5 model in Fig. 4, the difference between unity and

the DHvH=DHcal ratio after baseline subtraction is not

negligible ðk
ðsÞ
2 ¼ 0:91Þ: Despite these differences, the

trends in Figs. 4 and 5 are in large measure similar to

those in Figs. 2 and 3. In particular, Fig. 4 shows that the

model with 1a ¼ 0:25; like the 1ð1Þf ¼ 0:25 case in Fig. 2, has

a significantly lower DHvH=DHcal ratio than the other three

models considered in the same figure. The kRgl data in Fig. 5

shows that thermodynamic cooperativity increases with 1a;

as manifested in a smaller amount of postdenaturational

conformational expansion with increasing 1a; this is

comparable to the effect of increasing 1
ð1Þ
f in Fig. 3. Taken

together, the results in Figs. 2–5 suggest that a high degree

of thermodynamic cooperativity, similar to that in real,

small single-domain proteins, requires both strong local and

strong nonlocal interactions. Apparently, a high degree of

thermodynamic cooperativity is incompatible with either a

much weakened local conformational preference relative to

the favorable nonlocal interactions ð1
ð1Þ
f p 1aÞ or much

weakened favorable nonlocal interactions relative to the

local conformational preference ð1a p 1
ð1Þ
f Þ:

Although three-dimensional Gō-like models with strong

local and nonlocal interactions appear to satisfy the

thermodynamic criterion of calorimetric two-state coopera-

tivity, it has recently been noted that they are unable to

produce simple two-state folding/unfolding kinetics [7,8].

This is because the thermodynamic cooperativity of these

models is not sufficiently high. As a result, and in spite of the

native-centric nature of the common pairwise additive Gō-

like interactions, kinetic trapping becomes significant under

strongly native conditions, leading to folding rate slow-

downs and chevron rollovers [19]. More recent lattice

model investigations indicate that simple two-state folding/

unfolding kinetics require a high degree of thermodynamic

cooperativity that may be characterized as ‘near-Levinthal’

[34], necessitating many-body interactions beyond those

postulated by the common Gō model [34,35].

In view of this recent development, and to facilitate the

construction and investigation of continuum models that

incorporate these new ideas, it is instructive to compare in

more detail the thermodynamic behavior of the common

lattice Gō construct (with only pairwise additive contact

energies) with the behavior of models which have many-

body interactions and enhanced cooperativity. We also wish

to investigate whether results obtained from lattice models

supply additional support for the conclusions which we have

derived from our continuum model results. To this end,

Figs. 6–8 compare three 27mer lattice models.

Because of their intrinsic restrictions on conformational

possibilities, it is more straightforward to construct

cooperative lattice models than to construct off-lattice

continuum models that are similarly cooperative. Recently,

using evidence from kinetic simulations of chevron plots,

our group has proposed that a DHvH=DHcal ratio of k2 . 0:9

Fig. 4. Heat capacity as a function of temperature, for varying nonlocal

interaction energy 1a: Other parameters 1
ð1Þ
f ¼ 1:00 and q ¼ 4 are fixed.

(From left to right) dotted curve: 1a ¼ 0:25; Tm ¼ 0:43; short dashed curve:

1a ¼ 0:50; Tm ¼ 0:65; long dashed curve: 1a ¼ 0:75; Tm ¼ 0:84; solid

curve: 1a ¼ 1:00; Tm ¼ 1:02: These scans are obtained by histogram

techniques from simulations performed at Tsim ¼ 0:42; 0.64, 0.84, and 1.02,

respectively. The DHvH=DHcal cooperativity coefficients k2 without base-

line subtractions are 0.28, 0.40, 0.44, and 0.46, respectively. Modified

cooperativity coefficients k
ðsÞ
2 after subtraction of the baselines (indicated

by thin lines in the figure) for 1a ¼ 0:50; 0.75, and 1.00 are 0.91, 1.00, and

0.99, respectively. No value for kðsÞ2 was calculated for 1a ¼ 0:25 for the

same reason that no kðsÞ2 was provided for 1ð1Þf ¼ 0:25 in Fig. 2. The inset

shows k2 (diamonds) and k
ðsÞ
2 (circles) as functions of 1a:

Fig. 5. Average radius of gyration as a function of temperature, for varying

nonlocal interaction energy 1a: Other parameters 1ð1Þf ¼ 1:00 and q ¼ 4 are

fixed, as in Fig. 4. The correspondence between line styles and 1a values is

identical to that in Fig. 4. For each value of 1a; simulations were performed

at three different values of Tsim to ensure adequate sampling across the

whole range shown. (From left to right) for 1a ¼ 0:25 (dotted curves),

Tsim ¼ 0:42; 0.62, 0.82; for 1a ¼ 0:50 (short dashed curves), Tsim ¼ 0:64;

0.84, 1.04; for 1a ¼ 0:75 (long dashed curves), Tsim ¼ 0:84; 1.04, 1.24; and

for 1a ¼ 1:00 (solid curves), Tsim ¼ 1:02; 1.22, and 1.42.
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before baseline subtractions [as for models (ii) and (iii) in

Fig. 6a] is likely to be required in order for a lattice protein

chain model to produce chevron plots with linear regimes

similar in extent to those observed for real, small single-

domain proteins [34]. However, this numerical criterion is

not readily generalizable to off-lattice continuum models.

This is because the heat capacity effects of bond vibrations

and kinetic energy have to be taken into account in

continuum models, whereas these effects are absent in

lattice models. Thus, in the characterization of a model’s

thermodynamic cooperativity, more detailed information

concerning, for example, the behavior of the average radius

of gyration, has to be relied upon more heavily for

continuum models (see above) than for lattice models.

For the three lattice models studied here, the kRgl plots in

Fig. 6b show that, while the postdenaturational confor-

mational expansion of the common lattice Gō construct

(solid curve in Fig. 6b) is considerably milder than that of its

continuum counterpart (solid curves in Figs. 3 and 5), the

more cooperative lattice models with many-body inter-

actions exhibit much less (dotted curve in Fig. 6b) or nearly

nonexistent (dashed curve in Fig. 6b) postdenaturational

conformational expansion. The fluctuations in E and Rg near

the transition midpoint, shown in Figs. 7 and 8, indicate

further that the transitions between the native and denatured

Fig. 6. Thermodynamic cooperativities of the three representative 27mer

lattice models described in the text. Model definitions and simulation

details are given in Refs. [34,35]. Heat capacity (a) and average radius of

gyration (b) are determined by histogram techniques based upon Monte

Carlo sampling performed at Tsim ¼ Tm: (a) Heat capacity of (i) the

common Gō model with pairwise additive contact energy (solid curve, left);

(ii) the model that assigns an extra favorable energy to the native structure

as a whole (dotted curve, right); and (iii) the model with local–nonlocal

coupling (dashed curve, middle). The transition temperatures for the models

are Tm ¼ 0:701 (i), 1.13 (ii), and 0.755 (iii). Their DHvH=DHcal without

baseline subtractions are k2 ¼ 0:86; 0.98, and 0.99, and the corresponding

ratios after subtracting the baselines shown are k
ðsÞ
2 ¼ 1:00; 1.00, and 1.00,

respectively. (b) Average radius of gyration as a function of model

temperature for the three models [represented by the same line styles as in

(a)].

Fig. 7. Representative trajectories of the three models in Fig. 6 at their

respective transition temperatures. Variations in the potential energy of

models (i)–(iii) are shown in (a)–(c), respectively.

Fig. 8. Same as Fig. 7, except that variations in the radius of gyration are

shown here.
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ensembles are sharper and more two-state-like for the more

cooperative models (ii) and (iii) with many-body inter-

actions [parts (b) and (c) of Figs. 7 and 8] than for the

common Gō model [parts (a) of Figs. 7 and 8]. The

corresponding fluctuations in the fractional number of

native contacts Q [34,35] (data not shown) were also found

to exhibit a trend very similar to that of the energy

fluctuations in Fig. 7.

The lattice model results, shown in Figs. 6–8, are

compatible with the conclusion, reached above on the basis

of continuum model results, that both local and nonlocal

interactions are important for thermodynamic cooperativity.

The common lattice Gō model of scenario (i) includes only

nonlocal interactions, analogous to the interactions encoded

by Vnative in the off-lattice model. Scenario (iii), which takes

account also of the local geometry of the chain, displays

greater cooperativity than scenario (i).

Higher resolution data such as that in Figs. 7 and 8 opens

up future avenues for the assessment of different mechan-

isms of cooperativity using comparisons between model

predictions and experimental measurements of, for

example, conformational sizes and fluctuations [47–49]. It

is noteworthy that in the model (ii) scenario, with an extra

favorable energy for the native structure as a whole, the

native ensemble does not exhibit much energetic or

conformational variation (horizontal line segments at low

E and low Rg values in Figs. 7b and 8b). On the other hand,

in the model (iii) scenario with local–nonlocal coupling,

there is considerable variation in the native ensemble (low E

and low Rg fluctuations in Figs. 7c and 8c). Yet the variation

in the denatured ensemble is smaller in model (iii) than in

model (ii) (high E and high Rg fluctuations in parts (b)

and (c) of Figs. 7 and 8), resulting in a more two-state-like

average kRgl transition for model (iii) than for model

(ii), manifested in a near-immediate postdenaturational

ðT . TmÞ saturation of the dashed curve for model (iii) in

Fig. 6b compared to a more gradual postdenaturational

saturation of the dotted curve for model (ii) in the same

figure. All these differences in conformational properties are

in principle detectable through experiments on real proteins.

Hence, future experimental efforts along the lines suggested

here would help to verify or falsify different proposed

scenarios and interaction mechanisms [34,35,50,51] in the

endeavor to decipher the physical origins of cooperativity in

real proteins.

5. Conclusions

The present study suggests strongly that both local

conformational preferences and favorable nonlocal inter-

actions are crucial to protein thermodynamic cooperativity.

This result points to a useful constraint on simplified models

of protein molecules: they should take account both of local

and of nonlocal interactions.

As emphasized above, the scope of the present study is

limited. Only native-centric interaction schemes are con-

sidered; and here we have elected only one particular

physically plausible way to classify energy contributions

into ‘local’ and ‘nonlocal’ terms in the continuum models.

In addition, by using a native-centric interaction scheme

both for local and for nonlocal interactions, we have avoided

the possibility of energetic frustration, which might be

significant if a more realistic interaction scheme were used

[52,53]. To further elucidate the answers to the questions we

have posed, much remains to be investigated.

Nonetheless, our results show clearly that a high degree

of thermodynamic cooperativity is compatible neither with

a much weakened local interaction nor with a much

weakened nonlocal interaction, indicating that both local

and nonlocal interactions are important components in

protein energetics [54]. This finding is consistent with the

notion that a cooperative interplay between local and

nonlocal interactions [4,6,7,34,35] is a critical ingredient

underlying the apparent simple two-state cooperativity of

real, small single-domain proteins.

With regard to Gō-like native-centric modeling (see, e.g.

discussion in Refs. [8,10,11,55–57]), we observe that

significant differences in model predictions can result

from different Gō-like interaction schemes, even though

all of the schemes are designed to bias the chain towards the

same native structure. This underscores our point that

requiring a consistent account of cooperativity can be a

more productive approach to protein modeling than simply

designing a model heteropolymer to fold to a target structure

[8]. In this context, the present coarse-grained represen-

tations constitute only a first step in the understanding of

protein cooperativity. Ultimately, atomistic origins of local

and nonlocal interactions such as sidechain packing

[58–61] must be taken into account in an effort to provide

the necessary physical underpinning for the cooperative

mechanisms proposed here.
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[20] Gō N, Taketomi H. Proc Natl Acad Sci USA 1978;75:559–63.

[21] Dill KA. Biochemistry 1990;29:7133–55.

[22] Abkevich VI, Gutin AM, Shakhnovich EI. J Mol Biol 1995;252:

460–71.

[23] Chan HS. Nature 1998;392:761–3.

[24] Baldwin RL, Rose GD. Trends Biochem Sci 1999;24:26–33.

[25] Portman JJ, Takada S, Wolynes PG. J Chem Phys 2001;114:5069–81.

[26] de Gennes PG. J Phys Lett (Paris) 1975;36:L55–7.

[27] Doniach S, Garel T, Orland H. J Chem Phys 1996;105:1601–8.

[28] Bastolla U, Grassberger P. J Stat Phys 1997;89:1061–78.

[29] Doye JPK, Sear RP, Frenkel D. J Chem Phys 1998;108:2134–42.

[30] Koga N, Takada S. J Mol Biol 2001;313:171–80.

[31] Brant DA, Miller WG, Flory PJ. J Mol Biol 1967;23:47–65.

[32] Veitshans T, Klimov D, Thirumalai D. Fold Des 1997;2:1–22.

[33] Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford:

Oxford University Press; 1987.

[34] Kaya H, Chan HS. Proteins 2003;52:510–23.

[35] Kaya H, Chan HS. Proteins 2003;52:524–33.

[36] Yang D, Mok YK, Forman-Kay JD, Farrow NA, Kay LE. J Mol Biol

1997;272:790–804.

[37] Privalov PL, Khechinashvili NN. J Mol Biol 1974;86:665–84.

[38] Tiktopulo EI, Bychkova VE, Rička J, Ptitsyn OB. Macromolecules

1994;27:2879–82.

[39] Crippen GM, Chhadjer M. J Chem Phys 2002;116:2261–8.

[40] Jang H, Hall CK, Zhou Y. Biophys J 2002;82:646–59.

[41] Pokarowski P, Kolinski A, Skolnick J. Biophys J 2003;84:1518–26.

[42] Clementi C, Garcia AE, Onuchic JN. J Mol Biol 2003;326:933–54.

[43] Dragan AI, Privalov PL. J Mol Biol 2002;321:891–908.

[44] Sosnick TR, Trewhella J. Biochemistry 1992;31:8329–35.

[45] Hagihara Y, Hoshino M, Hamada D, Kataoka M, Goto Y. Fold Des

1998;3:195–201.

[46] Millet IS, Townsley LE, Chiti F, Doniach S, Plaxco KW.

Biochemistry 2002;41:321–5.

[47] Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR, Millett IS,

Doniach S, Forman-Kay JD, Kay LE. J Mol Biol 2002;316:101–12.

[48] Shimizu S, Chan HS. Proteins 2002;49:560–6.

[49] Goldenberg DP. J Mol Biol 2003;326:1615–33.

[50] Jewett AI, Pande VS, Plaxco KW. J Mol Biol 2003;326:247–53.

[51] Chan HS, Shimizu S, Kaya H. Methods Enzymol 2004; in press.

[52] Vendruscolo M, Paci E. Curr Opin Struct Biol 2003;13:82–7.

[53] Head-Gordon T, Brown S. Curr Opin Struct Biol 2003;13:160–7.

[54] Uversky VN, Fink AL. FEBS Lett 2002;515:79–83.

[55] Plotkin SS. Proteins 2001;45:337–45.

[56] Cieplak M, Hoang TX. Int J Mod Phys C 2002;13:1231–42.

[57] Cieplak M, Hoang TX. Biophys J 2003;84:475–88.

[58] Klimov DK, Thirumalai D. Fold Des 1998;3:127–39.

[59] Li L, Shakhnovich EI. Proc Natl Acad Sci USA 2001;98:13014–8.
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